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Oligomeric metal complexes are of fundamental interest in
studies of electron and energy transfer, as well as of potential
use as components in nanodevices.1 We have concentrated our
efforts on preparing linear oligomers with well-defined geom-
etries that exhibit anisotropic properties. For example, in the re-
cent syntheses of [Re(CO)3(bpy)(µ-dppene)Re(CO)2(bpy)(µ2-
dppene)Re(CO3)(bpy)]3+ and [Re(CO)3(bpy)(µ-dppene)Re(CO)2-
(bpy)(dppene)2+ (where bpy is 2,2′-bipyridine and dppene is (E)-
1,2-bis(diphenylphosphino)ethylene),cis,trans-[Re(bpy)(CO)2-
(dppene)2]2+ is formed thermally by utilizing trans-disubstitution
of fac-Re(bpy)(CO)3OTf with dppene followed by symmetrical
or unsymmetrical capping withfac-Re(CO)3(bpy)+ units, respec-
tively.2 These examples are the first that couple trans-substitution
chemistry with bridging ligands for the preparation of highly
luminescent linear oligomers, although other trans-substitution
strategies have been exploited where chromophoric monomer units
are potential synthons for extended structures.3-7 Here, we present
a preparative route to linear oligomeric Re(I) polypyridine com-
plexes as a result of asingle, stereospecificphotosubstitution of
a CO ligand trans to a bridging ligand in a symmetric dimeric
precursor.

During luminescence studies of the dimer [Re(CO)3(bpy)(µ-
dppene)Re(CO)3(bpy)]2+ (1) we observed that an accurate emis-
sion yield (Φem) 0.35 ( 0.06 in CH2Cl2 at 20 °C) could be
calculated only by taking into account the extreme photosensitivity
of the complex. Subsequent steady state photolysis in CH3CN
yielded a single product, [Re(CO)3(bpy)(µ2-dppene)Re(CO)2(bpy)
CH3CN]2+ (2), consistent with photolytic substitution of a single
carbonyl (see Scheme 1).8

Characterization of complex2 was achieved by a combination
of elemental analysis,31P NMR and IR spectroscopies, and
electrospray ionization mass spectrometry (ESI-MS) (see Table
1). The quantum yield of photosubstitution for the reaction,ΦCO,
was determined to be 0.27 (N2, CH3CN solution at 20°C).9 Pre-

parative photolysis of1 also was used to introduce anionic ligands
into the coordination sphere (e.g., Cl-, OTf-; complexes3 and
4, respectively) as shown in Scheme 1.10 While compounds2
and3 form by irradiating the symmetric dimer1 in the presence
of a large excess of coordinating ligand (i.e., CH3CN and Cl-,
respectively), it is interesting to note that compound4 is prepared
in high yield by irradiating the OTf- salt of1 in a noncoordinating
solvent (CH2Cl2, ΦCO ) 0.33). Photosubstitution of the counterion
is similar to that found for [Re(CO)4(N-N)]OTf which undergoes
efficient substitution of the OTf- upon the loss of an axial
carbonyl.11 Monomers of the formfac-[Re(CO)3(bpy)(PR3)]+ also
exhibit CO photosubstitution.12,13

The photosubstitution products of complex1 shown in Scheme
1 were targeted because they all possess a thermally labile ligand
and, therefore, can be used as synthetic intermediates for higher
order, more complex, trans-bridging oligomeric structures. For
example, reaction of2 with triphenylphosphine (PPh3) leads to
thermal substitution of CH3CN by PPh3 forming [Re(CO)3(bpy)-
(µ2-dppene)Re(CO)2(bpy)(PPh3)]2+ (5).14 As shown in Table 1,
the 31P NMR spectrum consists of five resonances for the three
distinct types of phosphorus nuclei. This is a result of trans
coupling of the phosphines, indicating that PPh3 is introduced in
a position trans to the dppene. Bridging diphosphine ligands such
ast-dppene and 1,4-bis(diphenylphosphino)benzene (dppb) were
reacted in a similar manner (complexes6 and 7, respectively;
see Scheme 1),14 forming dimers that contain a “dangling ligand”
capable of bridging to another metal center for the generation of
longer linear oligomers. Complex6 has been prepared previously
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by refluxing1 with excesst-dppene in chlorobenzene.2 Here we
present an alternative synthetic route using mild conditions that
leads explicitly to6. Complex 7 demonstrates our ability to
introduce a variety of bridging ligands during stepwise synthesis
thereby allowing auxiliary tuning of the electronic properties as
well as providing a means of distinguishing between individual
molecular components of the oligomer via31P NMR spectroscopy.

Multiple photosubstitution is common in polycarbonyl com-
plexes since replacement of a carbonyl with the incoming ligand
usually lowers the ligand field resulting in red-shifted product
absorption, and therefore some degree of secondary photolysis.15

Without an intervening physical variable (e.g., insolubility of the
photoproduct), it is our experience that these reactions are
preparatively inconvenient. Consequently, the observation that
only one carbonyl is lost from the symmetric dimer (1) which is
composed of identical ends containing thefac-Re(CO)3(bpy) unit
is notable. Lack of secondary photolysis is consistent with spectral
data that suggests that rapid and efficient energy transfer from
the tricarbonyl excited state to the newly formed dicarbonyl
Re(I) occurs in the products. Emission studies reveal that
excitation into the tricarbonyl-localized MLCT manifold in
complex2 (336 nm where 60% of photons are absorbed by the

tricarbonyl unit) leads to emission from only the low-energy
MLCT excited state localized on the dicarbonyl unit. This be-
havior is analogous to that of a recently prepared trimer, where
rapid energy transfer resulted in emission from the dicarbonyl
Re(I) excited state following excitation of the tricarbonyl ends.2

The transient IR spectrum of6 is also consistent with rapid
energy transfer from the tricarbonyl to the dicarbonyl Re(I) unit.16

For example, the bleach of the ground state after 337 nm
irradiation is followed by the appearance of a new set of excited
state dicarbonyl modes. Thus, on the time scale of the experiment
(∼150 ns), the excited state exists solely on the dicarbonyl end
of the dimer. Furthermore, the position of the excited state
carbonyl modes is essentially identical to that of the monomer
cis,trans-[Re(bpy)(CO)2(dppene)2]2+, indicating that there is little
or no mixing between the Re centers.

Stereospecific, unsymmetrical photosubstitution in dimers
serves as an important synthetic tool because the trans labilizing
effect of the phosphine ligand in the ground state17 is preserved
in the excited state. The ultimate success of the preparative pho-
tochemistry, however, can be traced directly to the rapid energy
transfer in the product, which inhibits further photosubstitution.
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Scheme 1. Photochemical and Thermal Preparation of Unsymmetrical Dimersa

a L is CH3CN, and X is OTf- or Cl-, and P-P is a bridging diphosphine ligand. See text for detailed steps.

Table 1. Spectral and Photophysical Data for the Complexesa,b

no. complex 31P NMR shifts (ppm)c IR freq (cm-1)d Eop (nm)e Eem (nm)f

1 [Re(CO)3(bpy)(µ-dppene)Re(CO)3(bpy)]2+ +14.9 2043, 1960, 1928 346 (3.92) 524
2 [Re(CO)3(bpy)(µ-dppene)Re(CO)2(bpy)CH3CN]2+ +27.1,+14.3 2041, 1957, 1942, 380 (3.71) 682

1927, 1868
3 [Re(CO)3(bpy)(µ-dppene)Re(CO)2(bpy)Cl]+ +28.4,+14.3 2040, 1955, 1925, 450 (3.56) g

1850
4 [Re(CO)3(bpy)(µ-dppene)Re(CO)2(bpy)OTf]+ +25.91,+15.58 2041, 1957, 1932, 420 (3.63) 696

1863
5 [Re(CO)3(bpy)(µ-dppene)Re(CO)2(bpy)PPh3]2+ +25.1,+24.1,+18.8, 2041, 1957, 1939, 410 (3.57) 617

+17.8,+14.3 1925, 1868
6h [Re(CO)3(bpy)(µ-dppene)Re(CO)2(bpy)η1-dppene]2+ +18.7,+17.8,+16.5, 2042, 1957, 1942, 426 (3.53) 623

+15.5,+13.4,-5.0 1926, 1870
7 [Re(CO)3(bpy)(µ-dppene)Re(CO)2(bpy)dppb]2+ +25.0,+24.0,+18.8, 2042, 1958, 1941, 410 (3.49) 618

+17.8,+14.3,-4.0 1926, 1870
a All complexes are triflate salts.b Abbreviations: dppene is (E)-1,2-bis(diphenylphosphino)ethylene, dppb is 1,4-bis(diphenylphosphino)benzene,

bpy is 2,2′-bipyridine, and OTf is trifluoromethylsulfonate.c In CD3CN with 85% phosphoric acid external standard except3 obtained in acetone-
d6. and4 obtained in CDCl3. d In MeCl2. e Eop is the absorption spectrum maximum for the lowest energy MLCT excited state (appears as an
undefined shoulder, logε is reported).f Eem is emission spectrum maximum corresponding to the lowest energy MLCT excited state. Corrected
emission data recorded on an SLM model 8000C spectrofluorimeter.g Emission was not observed for complex3 in solution.h Spectral data for6
from Woessner, S. A. Ph.D. Dissertation, University of Wyoming, 2000.
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